Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Chinese Journal of Pancreatology ; (6): 38-44, 2023.
Article in Chinese | WPRIM | ID: wpr-991184

ABSTRACT

Objective:To establish culture system for mouse pancreatic ductal organoids and investigate the morphology and physiological functions of the organoids.Methods:Pancreatic tissues were taken from C57BL/6 mice (6-8 weeks) and digested by collagenase Ⅳ. The pancreatic ducts were separated and collected and then the pancreatic organoids were cultured in the complete medium after Matrix gel embedding. Morphological evaluation of the organoids was performed after hematoxylin-eosin staining. The expression and localization of markers for organoids were identified by Western Blot and immunofluorescence staining; and the expression and localization of ion channels and antimicrobial peptides of the organoids were detected by agarose gel electrophoresis and immunofluorescence staining.Results:Mouse pancreatic organoids were successfully established, which could be stably passaged for 10 generations. The organoids grew spherically and formed a duct-like structure. The internal cavity corresponded to the lumen of pancreatic duct tissue. The pancreatic organoids stably expressed stem progenitor cell marker gene SOX9 and ductal epithelial cell-specific gene KRT19, which were both localized in the epithelium. The organoids did not express amylase. The organoids maintained stable expression of epithelial ion channels Clcn1, Kcnma1, CFTR, Slc12a5, Slc26a3, Slc26a6 and Scnn1a, low expression of Ano1 and no expression of Clcn3, Kcna1, Kcna2, Kcnd3, Kcnh1, Atp12a, Slc4a4, Slc9a1, Slc12a2 and Slc26a11; and CFTR highly expressed in epithelial cells. The organoids maintained high expression of antimicrobial peptides Reg3a, CRAMP and glycoprotein 2, low expression of Defb1, Defb2, and Defb3 and no expression of Defa1 and Defa4; and both CRAMP and Reg3a were expressed in the epithelial cells and secreted into the lumen of the organoids.Conclusions:Mouse pancreatic organoids are successfully established, which can be stably passaged. The organoids maintain the characteristics of ductal epithelial cells and can be used as an in vitro model to study the physiology of pancreatic ducts.

2.
Rev. méd. Chile ; 150(1): 88-92, ene. 2022. ilus
Article in Spanish | LILACS | ID: biblio-1389622

ABSTRACT

D. Julius was awarded the 2021 Medicine Nobel prize for the discovery of new cationic channels that detect temperatures either over 40 °C (TRPV1) or cold (TRPM8) ranging from 8-15 °C, followed by the latter identification of other channels that sense temperatures within other ranges. On the other hand, A. Patapoutian shared the 2021 Nobel prize for the independent and simultaneous co-discovery of the TRPM8 cationic channel. Furthermore, Patapoutian iden-tified piezo 1 and 2 channels previously referred to as the cell mechanosensors related to the sense of touch and proprioception. These experimental findings indicate that these novel cationic channels localized in nerve endings of the skin, mouth, lips, bronchial tree, the nephron, plus a variety of tissues transduce phy-sical stimuli into electrical activity that reach the brain sensory cortex to process these stimuli and elicit animal behavior.


Subject(s)
Animals , TRPM Cation Channels/physiology , Skin , Temperature , Cold Temperature , Nobel Prize
3.
Chinese Journal of Neurology ; (12): 908-913, 2022.
Article in Chinese | WPRIM | ID: wpr-957985

ABSTRACT

Familial episodic pain syndrome is characterized by ion channel gene mutation in dorsal root ganglion neurons, and there can be neuropathic pain in different parts. However, the lack of awareness of familial episodic pain syndrome, along with the absence of uniform diagnostic and treatment standards, may lead to frequent missed diagnosis and misdiagnosis. This article will review the concepts, classification, pathogenesis, clinical features, diagnosis and treatment of familial episodic pain syndrome, aimed at deepening the understanding of the diseases as well as facilitating early diagnosis and treatment.

4.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484789

ABSTRACT

Abstract Background: Spider venoms induce different physio-pharmacological effects by binding with high affinity on molecular targets, therefore being of biotechnological interest. Some of these toxins, acting on different types of ion channels, have been identified in the venom of spiders of the genus Phoneutria, mainly from P. nigriventer. In spite of the pharmaceutical potential demonstrated by P. nigriventer toxins, there is limited information on molecules from venoms of the same genus, as their toxins remain poorly characterized. Understanding this diversity and clarifying the differences in the mechanisms of action of spider toxins is of great importance for establishing their true biotechnological potential. This prompted us to compare three different venoms of the Phoneutria genus: P. nigriventer (Pn-V), P. eickstedtae (Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall similarity in their components, with only minor differences. The presence of a high number of similar proteins was evident, particularly toxins in the mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6. All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning protein composition and enzymatic activities, containing isoforms of the same toxins sharing high sequence homology, with minor modifications. However, these structural and functional variations are very important for venom diversity. In addition, our findings will contribute to the comprehension of the molecular diversity of the venoms of the other species from Phoneutria genus, exposing their biotechnological potential as a source for searching for new active molecules.

5.
J. venom. anim. toxins incl. trop. dis ; 28: e20210042, 2022. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1360568

ABSTRACT

Spider venoms induce different physio-pharmacological effects by binding with high affinity on molecular targets, therefore being of biotechnological interest. Some of these toxins, acting on different types of ion channels, have been identified in the venom of spiders of the genus Phoneutria, mainly from P. nigriventer. In spite of the pharmaceutical potential demonstrated by P. nigriventer toxins, there is limited information on molecules from venoms of the same genus, as their toxins remain poorly characterized. Understanding this diversity and clarifying the differences in the mechanisms of action of spider toxins is of great importance for establishing their true biotechnological potential. This prompted us to compare three different venoms of the Phoneutria genus: P. nigriventer (Pn-V), P. eickstedtae (Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall similarity in their components, with only minor differences. The presence of a high number of similar proteins was evident, particularly toxins in the mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6. All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning protein composition and enzymatic activities, containing isoforms of the same toxins sharing high sequence homology, with minor modifications. However, these structural and functional variations are very important for venom diversity. In addition, our findings will contribute to the comprehension of the molecular diversity of the venoms of the other species from Phoneutria genus, exposing their biotechnological potential as a source for searching for new active molecules.(AU)


Subject(s)
Animals , Mass Spectrometry/instrumentation , Spider Venoms/analysis , Spiders , Protein Isoforms/biosynthesis , Hyaluronoglucosaminidase , Pharmaceutical Preparations
6.
International Journal of Cerebrovascular Diseases ; (12): 698-702, 2021.
Article in Chinese | WPRIM | ID: wpr-907384

ABSTRACT

Cerebral edema and its caused elevated intracranial pressure are one of the main causes of death in patients with acute ischemic stroke. The main pathogeneses of brain edema include cytotoxic edema, ionic edema, and angiogenic edema. At present, the treatment strategies used to control brain edema and reduce intracranial pressure are mainly osmotic drugs and hemicraniectomy decompression, which are symptomatic treatments to reduce intracranial pressure. In recent years, it has been proposed to inhibit the ion channel in the formation of brain edema as a therapeutic target, which provides a new direction for the treatment of brain edema.

7.
J. venom. anim. toxins incl. trop. dis ; 27: e20210026, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1351023

ABSTRACT

Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.(AU)


Subject(s)
Animals , Pain , Scorpions , Spider Venoms , Models, Animal , Ion Channels , Phospholipids , Analgesics
8.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484776

ABSTRACT

Abstract Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.

9.
Neuroscience Bulletin ; (6): 684-700, 2021.
Article in Chinese | WPRIM | ID: wpr-951992

ABSTRACT

The locus coeruleus (LC) is one of the essential chemoregulatory and sleep–wake (S–W) modulating centers in the brain. LC neurons remain highly active during wakefulness, and some implicitly become silent during rapid eye movement (REM) sleep. LC neurons are also involved in CO

10.
Rev. Fac. Med. (Bogotá) ; 68(2): 279-282, Apr.-June 2020.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1125637

ABSTRACT

Resumen Introducción. Los canales activados por voltaje para Na+ y para K+ presentan compuertas de activación e inactivación, las cuales se abren y se cierran dependiendo de la intensidad de la corriente eléctrica que fluye por la membrana cuando está respondiendo a un estímulo. Durante este breve momento, la membrana entra en un periodo de refractariedad que la hace insensible a otros estímulos. Objetivo. Demostrar que los periodos refractarios absoluto y relativo se presentan a medida que se va desarrollando el potencial de acción y no después de que se ha completado, mediante un análisis teórico basado en el funcionamiento eléctrico normal de los canales activados por voltaje para Na+ y K+. Cuestionamientos. En diversos textos y artículos de fisiología, las definiciones de los periodos refractarios absoluto y relativo son confusas y erróneas, puesto que no tienen en cuenta el funcionamiento normal de los canales activados por voltaje. Además, la ubicación que dan a dichos periodos con respecto al potencial de acción es desfasada y su tiempo de duración es incierto. Conclusión. Los periodos refractarios absoluto y relativo se presentan durante el desarrollo del potencial de acción y no después de que ha sido completado.


Abstract Introduction: Voltage-gated Na+ and K+ channels have activation and inactivation gates that open and close depending on the intensity of the electric current flowing through the membrane when it is responding to a stimulus. During this brief moment, the membrane enters a refractory period that makes it insensitive to other stimuli. Objective: To prove that absolute and relative refractory periods occur as the action potential develops rather than after it has been completed, by means of a theoretical analysis based on the normal electrical functioning of voltage-gated Na+ and K+ channels. Questioning: Several texts and articles on physiology provide confusing and misleading definitions of absolute and relative refractory periods, since they don't consider the normal functioning of voltage-gated channels. Furthermore, the location they give to these periods in relation to the action potential is out-of-time and their duration remains uncertain. Conclusion: Absolute and relative refractory periods occur as the action potential develops rather than after it has been completed.

11.
Rev. cuba. estomatol ; 57(2)abr.-jun. 2020.
Article in Spanish | LILACS, CUMED | ID: biblio-1508198

ABSTRACT

Introducción: El dolor proveniente de cabeza y cuello se vincula a la vía trigeminal, y participan tres neuronas: neurona de primer orden ubicada en ganglio trigeminal; neurona de segundo orden, en el subnúcleo caudal del nervio trigémino; y la neurona de tercer orden que parte de la zona medial del complejo ventrobasal de tálamo y termina en la corteza cerebral. Objetivo: Interpretar que el daño tisular, mediante impulsos nerviosos es transmitido por una cadena de neuronas hasta el encéfalo. Contenido: Las neuronas de primer orden, sus cuerpos neuronales se encuentran ubicados en el ganglio espinal del trigémino, en hueso temporal. En el subnúcleo caudal, se ubican las neuronas de segundo orden que reciben estímulos nociceptivos y de temperatura de la cara y la boca; sus axones se cruzan en la extensión de este subnúcleo, y ascienden contralateralmente, y establecen sinapsis en el tálamo con neuronas de tercer orden. En el encéfalo no hay un único "centro del dolor", las neuronas de tercer orden, terminan en diferentes áreas de la corteza cerebral que se reconocen como "matriz del dolor". Consideraciones finales: Tres conjuntos de neuronas conforman la vía nociceptiva trigeminal, la primera ubicada en el ganglio trigeminal fuera del sistema nervioso central y los otros dos conjuntos neuronales conforman núcleos dentro del mismo(AU)


Introduction: Pain from the head and neck is linked to the trigeminal pathway and three neurons participate: a first-order neuron located in the trigeminal ganglion, a second-order neuron from the subnucleus caudalis of the trigeminal nerve, and a third-order neuron which starts from the medial area of the ventrobasal thalamus complex and ends in the cerebral cortex. Objective: Describe the way in which a chain of neurons transmit tissue damage to the encephalon by means of nerve impulses. Content: In first-order neurons, their neuronal bodies are located in the trigeminal spinal ganglion, in temporal bone. In the subnucleus caudalis, second-order neurons are found which receive nociceptive and temperature stimuli from the face and mouth. Their axons cross over the extension of this subnucleus, ascend contralaterally and establish synapses with third-order neurons in the thalamus. In the encephalon there is not a single "pain center": third-order neurons end in different areas of the cerebral cortex recognized as the "pain matrix". Final considerations: Three sets of neurons make up the trigeminal nociceptive pathway. The first one is located in the trigeminal ganglion outside the central nervous system whereas the other two form nuclei within it(AU)


Subject(s)
Humans , Nociception
12.
Journal of Zhejiang University. Medical sciences ; (6): 508-513, 2020.
Article in Chinese | WPRIM | ID: wpr-828472

ABSTRACT

More and more evidences support that the abnormality of GABAergic interneurons is associated with autism spectrum disorders (ASD), epilepsy, schizophrenia and other neurodevelopmental disorders. In recent years, numerous drugs have been developed to regulate ion channels and receptors in GABAergic interneurons, including sodium channels and N-methyl-D-aspartate (NMDA) receptors. The activators of Na channel can enhance the action potential of GABAergic interneurons by reducing the inactivation of Na channel. NMDA receptor, as a potential therapeutic target of ASD, can restore the NMDA function of GABAergic interneurons, which would be used to treat behavioral defects. In addition, there are many ion channels and receptors on GABAergic interneurons related to ASD. This article reviews GABAergic interneurons in the pathogenesis of ASD and the related interventions.

13.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 550-560, 2020.
Article in English | WPRIM | ID: wpr-827214

ABSTRACT

Bufalin is one of the main pharmacological and toxicological components of Venenum Bufonis and many traditional Chinese medicine preparations. The cardiotoxicity clearly limits its application to patients living in countries. Hence, an investigation of its toxicological mechanism is helpful for new drug development and treatment of the related clinical adverse reactions. We investigate the cardiotoxicity of bufalin using human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) (0.003-0.1 μmol·L), human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) (0.03-0.3 μmol·L) and eight human cardiac ion channel currents (0.01-100 μmol·L) combined with an impedance-based bioanalytical and patch clamp method. Biphasic effect of bufalin on the contractility in hiPSC-CMs, which has been shown to strengthen myocardial contractility, accelerate conduction, and increase beating rate at the earlier stage of administration, whereas weakened myocardial contractility, abolished conduction, and ceased beating rate at the later stage of administration. Bufalin decreased the action potential duration (Action potential duration at 30%, 50% and 90% repolarization), cardiac action potential amplitude, and maximal depolarization rate and depolarized the resting membrane potential of hiPSC-CMs. Spontaneous beating rates of hiPSC-CMs were markedly increased at 0.03 μmol·L, while were weakened at 0.3 μmol·L after application. Bufalin blocks I in a concentration-dependent manner with half maximal inhibitory concentration of 74.5 μmol·L. Bufalin respectively increased the late sodium current and Na-Ca exchange current with a concentration for 50% of maximal effect of 2.48 and 66.06 μmol·L in hiPSC-CMs. Whereas, bufalin showed no significant effects on other cardiac ion channel currents. The enhancement of the late sodium current is one of the main mechanism for cardiotoxicity of bufalin.

14.
China Journal of Chinese Materia Medica ; (24): 5110-5116, 2020.
Article in Chinese | WPRIM | ID: wpr-878798

ABSTRACT

Cerebral ischemia is a series of clinical symptoms and signs of cerebral ischemia, hypoxia and neuronal damage caused by cerebral artery stenosis or occlusion due to atherosclerosis or thrombosis, which seriously affects human health and quality of life. Cerebral ischemia involves the cascade reaction of the "neurovascular unit" system, and finally affects the normal physiological function of nerve cells and produces a series of pathological changes. And the changes in the structure and function of various ion channels in the cell membrane play an important role during this process. This article illustrates the changes in the ion channel associated with ce-rebral ischemic diseases, such as the potassium ion channels, sodium ion channels, calcium channels and other relevant channels, like AQP, TRPM2, TRPM7, TRPV4, ASICs, Cl~- channel, and explores the intervention effect of traditional Chinese medicine in prevention and treatment of cerebral ischemic diseases from the perspective of ion channels, in order to provide references for potential targets involving in drug development for the future prevention and treatment of cerebral ischemic diseases.


Subject(s)
Humans , Brain Ischemia/drug therapy , Ischemia , Medicine, Chinese Traditional , Neurons , Quality of Life
15.
West China Journal of Stomatology ; (6): 628-636, 2020.
Article in Chinese | WPRIM | ID: wpr-878385

ABSTRACT

OBJECTIVE@#To explore the mechanism of Piezo1 protein in mediating the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) via the Notch signaling pathway.@*METHODS@#In this study, young permanent teeth extracted from impacted teeth of 8-14-year-
old children from January 1, 2016 to January 1, 2018 in the Department of Orthodontic, Beijing Children's Hospital were selected as cell sources. hPDLSCs were extracted by enzymatic digestion. Immunohistochemical staining was used to detect the expression of keratin and vimentin, and flow cytometry was used to identify the markers (CD146 and STRO-1) of hPDLSCs. The construction and screening of Piezo1 siRNA gene interference vector and Piezo1 gene overexpression plasmid were completed. Flexcell 4000T mechanical distraction stress instrument was used to construct hPDLSC cell model in vitro. According to the preliminary results, the experiment was divided into five groups: siRNA interference group, overexpression group, blank control group, stretch stress group, and negative control group. Real time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of Piezo1, Notch1, alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and bone sialoprotein (BSP). Western blot was used to detect the expression of ALP and Runx2. Fluo-3 AM probe was used to detect intracellular calcium content.@*RESULTS@#Vimentin staining of hPDLSCs was positive, and keratin staining was negative. Flow cytometry was used to detect the expression of STRO-1 and CD146, markers of hPDLSC. Empty viral vectors, siRNA-Piezo1 interference sequence, and Piezo1 overexpression vector sequence could be transfected into hPDLSC by lentivirus, and the transfection efficiency was high (approximately 90%). The reverse transcription-polymerase chain reaction (RT-PCR) results showed that there were significant differences in Piezo1 gene levels among the siRNA interference group, overexpression group, blank control group, stretch stress group, and negative control group (F=9.573, P<0.05). The level of Piezo1 in the overexpression group was significantly higher than that in the siRNA interference group (q=3.893, P<0.05). The level of Piezo1 in the stretch stress group was significantly higher than that in the blank control group (q=2.006, P<0.05). The expression of Notch1 and osteogenic genes ALP, Runx2, OCN, and BSP had the same trend. Western blot results showed that there were significant differences in the expression of ALP in the siRNA interference group, overexpression group, blank control group, stretch stress group, and negative control group (F=11.207, P<0.001). The expression level of ALP in the overexpression group was significantly higher than that in the siRNA interference group (q=2.991, P<0.05). The expression of ALP in the stretch stress group was significantly higher than that in the blank control group (q=3.007, P<0.05). The expression of Runx2 protein showed the same trend. The intracellular calcium fluorescence intensity of the overexpression group was significantly higher than that of the siRNA interference group, and the intracellular calcium fluorescence intensity of the stretch stress group was significantly higher than that of the siRNA interference group.@*CONCLUSIONS@#Mechanical stretch stress can promote the expression of Piezo1 protein. Ca2+ is the second messenger, activates the Notch1 signaling pathway and the expression of ALP, Runx2, OCN, and BSP; and promotes the osteogenic differentiation of hPDLSC. The siRNA-Piezo1 interfering plasmid can block this process. On the contrary, the overexpression plasmid of Piezo1 can promote the osteogenic differentiation of PDLSCs.


Subject(s)
Child , Humans , Alkaline Phosphatase , Cell Differentiation , Cells, Cultured , Ion Channels , Osteogenesis , Periodontal Ligament , Signal Transduction , Stem Cells
16.
Journal of Southern Medical University ; (12): 972-980, 2020.
Article in Chinese | WPRIM | ID: wpr-828942

ABSTRACT

OBJECTIVE@#To investigate the effects of acid-sensing ion channels (ASICs) on electrophysiological epileptic activities of mouse hippocampal pyramidal neurons in the extracellular acidotic condition.@*METHODS@#We investigated effects of extracellular acidosis on epileptic activities induced by elevated extracellular K concentration or the application of an antagonist of GABA receptors in perfusate of mouse hippocampal slices under field potential recordings. We also tested the effects of extracellular acidosis on neuronal excitability under field potential recording and evaluated the changes in epileptic activities of the neurons in response to pharmacological inhibition of ASICs using a specific inhibitor of ASICs.@*RESULTS@#Extracellular acidosis significantly suppressed epileptic activities of the hippocampal neurons by converting ictal-like epileptic activities to non-ictal-like epileptic activities in both high [K ]o and disinhibition models, and also suppressed the intrinsic excitability of the neurons. ASICs inhibitor did not antagonize the inhibitory effect of extracellular acidosis on ictal epileptic activities and intrinsic neuronal excitability, but exacerbated non-ictal epileptic activities of the neurons in extracellular acidotic condition in both high [K]o and disinhibition models.@*CONCLUSIONS@#ASICs can differentially modulate ictal-like and non-ictallike epileptic activities via its direct actions on excitatory neurons.


Subject(s)
Animals , Mice , Acid Sensing Ion Channels , Acidosis , Hippocampus , Hydrogen-Ion Concentration , Pyramidal Cells
17.
The Korean Journal of Physiology and Pharmacology ; : 191-201, 2019.
Article in English | WPRIM | ID: wpr-761784

ABSTRACT

The transient receptor potential canonical (TRPC) 5 channel, known as a nonselective cation channel, has a crucial role in calcium influx. TRPC5 has been reported to be activated by muscarinic receptor activation and extracellular pH change and inhibited by the protein kinase C pathway. Recent studies have also suggested that TRPC5 is extracellularly activated by englerin A (EA), but the mechanism remains unclear. The purpose of this study is to identify the EA-interaction sites in TRPC5 and thereby clarify the mechanism of TRPC5 activation. TRPC5 channels are over-expressed in human embryonic kidney (HEK293) cells. TRPC5 mutants were generated by site-directed mutagenesis. The whole-cell patch-clamp configuration was used to record TRPC5 currents. Western analysis was also performed to observe the expression of TRPC5 mutants. To identify the EA-interaction site in TRPC5, we first generated pore mutants. When screening the mutants with EA, we observed the EA-induced current increases of TRPC5 abolished in K554N, H594N, and E598Q mutants. The current increases of other mutants were reduced in different levels. We also examined the functional intactness of the mutants that had no effect by EA with TRPC5 agonists, such as carbachol or GTPγS. Our results suggest that the three residues, Lys-554, His-594, and Glu-598, in TRPC5 might be responsible for direct interaction with EA, inducing the channel activation. We also suggest that although other pore residues are not critical, they could partly contribute to the EA-induced channel activation.


Subject(s)
Humans , Calcium , Carbachol , Hydrogen-Ion Concentration , Ion Channels , Kidney , Mass Screening , Mutagenesis, Site-Directed , Mutant Proteins , Protein Kinase C , Receptors, Muscarinic
18.
Neuroscience Bulletin ; (6): 98-112, 2019.
Article in English | WPRIM | ID: wpr-775484

ABSTRACT

Clinical trials and animal experimental studies have demonstrated an association of arterial baroreflex impairment with the prognosis and mortality of cardiovascular diseases and diabetes. As a primary part of the arterial baroreflex arc, the pressure sensitivity of arterial baroreceptors is blunted and involved in arterial baroreflex dysfunction in cardiovascular diseases and diabetes. Changes in the arterial vascular walls, mechanosensitive ion channels, and voltage-gated ion channels contribute to the attenuation of arterial baroreceptor sensitivity. Some endogenous substances (such as angiotensin II and superoxide anion) can modulate these morphological and functional alterations through intracellular signaling pathways in impaired arterial baroreceptors. Arterial baroreceptors can be considered as a potential therapeutic target to improve the prognosis of patients with cardiovascular diseases and diabetes.


Subject(s)
Animals , Humans , Baroreflex , Physiology , Blood Pressure , Physiology , Cardiovascular Diseases , Metabolism , Diabetes Mellitus , Metabolism , Ion Channels , Metabolism , Pressoreceptors , Metabolism
19.
Chinese Journal of Applied Clinical Pediatrics ; (24): 1485-1489, 2019.
Article in Chinese | WPRIM | ID: wpr-803020

ABSTRACT

Objective@#To investigate the effect of intestinal flora in children with functional constipation (FC) on expression of acid-sensitive Ion channel 3(ASIC3) in rats and their regulation in intestinal motility.@*Methods@#Faeces of FC children identified according to RomeⅣ criteria and healthy children from the First Affiliated Hospital of Anhui Medical University from December 2017 to June 2018 were collected, and then made into fecal microbiota solution.A pseudo - sterile rat model was established, according to the random number table method, and the rats were randomly divided into the treatment group and the control group, with 12 rats in each group, then the treatment group was given fecal microbiota solution of the children with FC and the control group was given fecal microbiota solution of the healthy children.The visceral sensitivity and intestinal propulsion rate of rats were determined by means of abdominal withdrawal reflex (AWR), while the intestinal microorganism of rats and children with FC were determined by 16SrDNA high-throughput sequencing, and the expressions of ASIC3 of intestinal in mRNA and protein were determined by adopting fluorescence quantitative PCR and Western blot.@*Results@#The species and quantity of intestinal flora of the children with FC and rats implanted with FC faecal bacteria were reduced(all P<0.05), and firmicutes and bacteroidetes were the main bacteria; compared to the control group, the small intestine propulsion rate(52% vs.74%) and visceral sensitivity(78 mmHg vs.63 mmHg) of the treated group were significantly decreased compared with those in the control group (all P<0.05); the mRNA (0.003 1±0.000 8 vs.0.012 4±0.002 5) and protein levels of ASIC3 (0.013 2±0.001 9 vs.0.072 1±0.008 7) in the small intestine were down-regulated significantly(all P<0.05); and the mRNA (0.002 8±0.000 7 vs.0.009 4±0.001 1) and protein levels of ASIC3(0.038 2±0.004 5 vs.0.089 7±0.009 4) in the colon were down-regulated significantly(all P<0.05).@*Conclusions@#Children with FC have intestinal flora disorder, and intestinal flora of FC children may affect intestinal motility by down-regulating the expression of intestinal ASIC3 in rats.

20.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 708-711, 2019.
Article in Chinese | WPRIM | ID: wpr-797902

ABSTRACT

Acid-sensing ion channels are a class of extracellular H+ activated cation channels, belonging to the amiloride-sensitive epithelial Na+ channel/degenerin (ENaC/DEG) superfamily. During extracellular acidification, the channels are activated and produce corresponding action potential. Acid-sensing ion channels are extensively expressed in the peripheral and central nervous system. It plays an important in synaptic plasticity, mechanical sensation, injury sensation related to acidosis of local tissues, acid reception and retinal regulation. This article reviews the expression, biological characteristics and functions of acid-sensing ion channels in cochlea, vestibular tissue and auditory center, so as to improve the understanding of physiology and pathophysiology of auditory system.

SELECTION OF CITATIONS
SEARCH DETAIL